How did mathematics teachers work four thousand years ago?

Curricula and syllabuses in Mesopotamia

Christine Proust
(Laboratoire SPHERE, CNRS \& Université Paris Diderot)
France

Conference Re(s)sources 2018, 28-29-30 May 2018, French Institute of Education, ENS de Lyon
\square Sciengep ReveA © EducTice Iut

The literacy curriculum

Niek Veldhuis. 1997. Elementary Education at Nippur, The Lists of Trees and Wooden Objects. Ph. D. dissertation Thesis, University of Groningen

* Elementary level (lexical lists)
- lists of cuneiform signs,
- Sumerian vocabulary and
- grammatical structures
* Intermediate level
- Sumerian sentences (proverbs)
- administrative forms (models of contracts)

School tablet, Nippur,
Old Babylonian period
University of Jena (HS 249)

Metrological tables (capacities, weights, surfaces)

1 gin grain	1	$1 / 2$ še silver	10	$1 / 3$ sar surface	20
...		...		$1 / 2$ sar	30
18 gin	18	18 gin	18	$2 / 3$ sar	40
19 gin	19	19 gin	19	5/6 sar	50
$1 / 3$ sila	20	1/3 mana	20	1 sar	1
$1 / 2$ sila	30	$1 / 2$ mana	30	$1 \frac{1}{3}$ sar	1:20
$2 / 3$ sila	40	2/3 mana	40	$1 \frac{1}{2}$ sar	1:30
5/6 sila	50	5/6 mana	50	$1 \frac{1}{3}$ sar	1:40
1 sila	1	1 mana	1	$15 / 6$ sar	1:50
$1 \frac{1}{3}$ sila	1:20	$1 \frac{1}{3}$ mana	1:20	2 sar	2
$1 \frac{1}{2}$ sila	1:30	$1 \frac{1}{2}$ mana	1:30	3 sar	3
$1 \frac{1}{3}$ sila	1:40	$1 \frac{1}{3}$ mana	1:40	4 sar	4
$15 / 6$ sila	1:50	$15 / 6$ mana	1:50	5 sar	5
2 sila	2	2 mana	2	6 sar	6
3 sila	3	3 mana	3	7 sar	7
4 sila	4	4 mana	4	8 sar	8
5 sila	5	5 mana	5	9 sar	9
6 sila	6	6 mana	6	\ldots	
7 sila	7	7 mana	7	30 sar	30
8 sila	8	8 mana	8	40 sar	40
9 sila	9	9 mana	9	1/2 GAN	50
1 ban še	10	10 mana	10	1 iku GAN	1:40

Multiplication tables by 7:12
50
45
44:26:40
6:40
40
36
30
25
24
22:30
20
18
16:40
16
15
12:30
12
10
9
8:20
8

Numerical tables

50

Multiplication table by 9

1 Someone who cannot produce "a-a", from where will he achieve fluent speech?

2 A scribe who does not know Sumerian, from where will he produce a translation?

3 The scribe trained in counting is deficient on clay. The scribe skilled with clay is deficient in counting.

Ni 5376 (Istanbul Museum)
Nippur, OB period

The curriculum at Nippur

Level	Content	Type				
Elementary	Metrological lists: capacities, weights, surfaces, lengths Metrological tables: capacities, weights, surfaces, lengths, heights Numerical tables: reciprocals, multiplications, squares Tables of square roots and cube roots	I, II II				
I, II, III			$	$	Intermediate	Exercises: calculations of surfaces, reciprocals, linear problems
:---	:---					

Reverse

1 šusi	10
2 šusi	20
3 šusi	30
4 šusi	40
5 šusi	50
6 šusi	1
7 šusi	$1: 10$
8 šusi	$1: 20$
9 šusi	$1: 30$
$1 / 3$ kuš	$1: 40$
$1 / 2$ kuš	$2: 30$
$2 / 3$ kuš	$3: 20$
$5 / 6$ kuš	$4: 10$
1 kuš	5
$11 / 3$ kuš	$6: 40$
$11 / 2$ kuš	$7: 30$
$12 / 3$ kuš	$8: 20$
2 kuš	10

1 šusi = 1 finger (ca. 1.6 cm)

1 kuš = 1 cubit (ca. 50 cm)

27 še	9
28 še	$9: 20$
29 še	$9: 40$
$1 / 6$ gin	10
$1 / 6$ gin 10 še	$13: 20$
$1 / 4$ gin	15
$1 / 4$ gin 5 še	$16: 40$
$1 / 3$ gin	20
$1 / 3$ gin 15 še	25
$1 / 2$ gin	30
$1 / 2$ gin 15 še	35
$2 / 3$ gin	40
$2 / 3$ gin 15 še	45
$5 / 6$ gin	50
$5 / 6$ gin 15 še	55
1 gin	1

Metrological table for weight, small surfaces, small volumes

Intermediate level:

Multiplication and division

Evaluating surfaces

Computing reciprocals

Lengths

1 šu-si	10
$\mathbf{2} s ̌ u-s i$	$\mathbf{2 0}$
$3 \check{s u} u-s i$	30
$4 \check{s} u-s i$	40
$5 \check{s} u-s i$	50
$6 s \check{s} u-s i$	1

Surfaces

$\mathbf{1 / 3}$ še	$\mathbf{6 : 4 0}$
$1 / 2 \check{s} e$	10
1 še	20
$2 \check{s ̌ e}$	40
$21 / 2$ še	50
3 še s	1

Computing a reciprocal: the factorization algorithm

Obverse		
4:26:40		
Its reciprocal		
13:30		
==============		
Reverse		
4:26:40		
40*		
$13: 30$		
l		

*mistake of the scribe: he wrote 41 instead of 40

igi 2	30
igi 3	20
igi 4	15
igi 5	12
igi 6	10
igi 8	$7: 30$
igi 9	$6: 40$
igi 10	6
igi 12	5
igi 15	4
igi 16	$3: 45$
igi 18	$3: 20$
igi 20	3
igi 24	$2: 30$
igi 25	$2: 24$

igi 27	$2: 13: 20$
igi 30	2
igi 32	$1: 52: 30$
igi 36	$1: 40$
igi 40	$1: 30$
igi 45	$1: 20$
igi 48	$1: 15$
igi 50	$1: 12$
igi 54	$1: 6: 40$
igi 1	1
igi 1:4	$56: 15$
igi 1:21	$44: 26: 40$

友 igi

The division of a by b (b regular) is a sequence of two operations: finding the reciprocal of b, and multiplying a by the reciprocal of b.

$5 \div 30$	\rightarrow	5×2	\rightarrow
10			
$4: 26: 40 \div 6: 40$	\rightarrow	$4: 26: 40 \times 9$	\rightarrow

2	30
3	20
4	15
5	12
6	10
8	$7: 30$
9	$6: 40$
10	6
12	5
15	4
16	$3: 45$
18	$3: 20$
20	3
24	$2: 30$
25	$2: 24$
27	$2: 13: 20$
30	2
32	$1: 52: 30$
36	$1: 40$
40	$1: 30$
45	$1: 20$
48	$1: 15$
50	$1: 12$
54	$1: 6: 40$
1	1
$1: 4$	$56: 15$
$1: 21$	$44: 26: 40$

2	30
3	20
4	15
5	12
6	10
8	$7: 30$
9	$6: 40$
10	6
12	5
15	4
16	$3: 45$
18	$3: 20$
20	3
24	$2: 30$
25	$2: 24$
27	$2: 13: 20$
30	2
32	$1: 52: 30$
36	$1: 40$
40	$1: 30$
45	$1: 20$
48	$1: 15$
50	$1: 12$
54	$1: 6: 40$
1	1
$1: 4$	$56: 15$
$1: 21$	$44: 26: 40$

$4: 26: 40$	9	
40		$1: 30$
	$13: 30$	

- 4:26:40 ends with the regular number 6:40, so $4: 26: 40$ is "divisible" by $6: 40$.
- Divide $4: 26: 40$ by $6: 40$, that is, multiply $4: 26: 40$ by the reciprocal of $6: 40$.
- The reciprocal of 6:40 is 9 .
- This number 9 is placed on the right.
- The product of $4: 26: 40$ by 9 gives 40 , so 40 is the quotient of $4: 26: 40$ by $6: 40$; this number is placed on the left.
- The reciprocal of 40 is $1: 30$. The number $1: 30$ is placed on the right.
- To find the reciprocal of $4: 26: 40$, we only have to multiply the reciprocals of the factors of 4:26:40, that is to say, the numbers 9 and 1:30 placed on the right. This gives 13:30, the reciprocal sought.

To sum up:

Right $\quad 4: 26: 40=6: 40 \times 40$
Left $\quad 9 \times 1: 30=13: 30$

YBC 4657
(fields)
YBC 4604
(bicks)

10 sections

YBC 4657
(trenches)

31 sections
on trenches

YBC 5037
(trenches)

Mathematical Catalogues

YBC 4666 (canals)

26 sections

The catalogue texts and associated procedure texts

	Museum nb	Content	Associated procedure text
C1	YBC 4612	15 statements on fields	Ø (lost?)
C2	YBC 6492	24 statements on fields	Ø (lost?)
C3	YBC 4607	10 statements on bricks	Ø (lost?)
C4	YBC 4652	22 statements on stones	Ø (lost?)
C5	YBC 4657	31 statements on trenches	$\begin{aligned} & \text { YBC } 4663 \text { (P5a, solves C5 \#1-8) } \\ & \text { Ø (lost P5b) } \\ & \text { YBC } 4662 \text { (P5c, , solves C5 \#19- } \\ & 28) \end{aligned}$
C6	YBC 5037	44 statements on trenches	Ø (lost?)
C7	YBC 4666	26 statements on canals	Ø (lost?)
C8	YBC 7164	19 statements on canals	Ø (lost?)

Text	Tablet	Content	\# in the catalogue	Colophon
Catalogue text C	YBC 4657	31 statement of problems on trenches		31 sections on trenches
Procedure text Pa	YBC 4663	8 problems with procedures	$1-8$	No colophon
Procedure text Pb	lost	10 problems with procedures	$9-18$	No colophon
Procedure text Pc	YBC 4662	10 problems with procedures	$19-28$	No colophon

YBC 4663
A procedure text (Neugenabuer \& Sachs 1945, text H)

Old Babylonian period Unknown provenience (probably Southern Mesopotamia)
Yale Babylonian
Collection
8 problems with procedures dealing with the cost of digging a trench.

YBC 4663 \#1

1. A trench. 5 ninda is its length, $1 \mathbf{1} / 2$ ninda (is its width), $1 / 2$ ninda is its depth, $10\langle$ gin> is the volume of the work assignment, $\mathbf{6} \check{s} e$ [silver is the wages of the hired man].
2. The base, the volume, the (number) of workers and the silver (of the total expenses) are how much? You, to know it,
3. the length and the width cross, 7:30 it will give you.
4. 7:30 to its depth raise, $\mathbf{4 5}$ it will give you.
5. The reciprocal of the work assignment detach, $\mathbf{6}$ it will give you. To 45 raise, $4: 30$ it will give you.
6. $\mathbf{4 : 3 0}$ to the wages raise, 9 it will give you. Such is the procedure.

YBC 4663 \#1: the statement
Table of length / width

A trench. 5 ninda is its length, $11 / 2$ ninda (is its width), $\mathbf{1} 2$ ninda is its depth, 10	$1 / 2$ ninda 1 ninda	$\begin{aligned} & 30 \\ & 1 \end{aligned}$	Table of	/ volume	Table	
<gin> is the volume of the work assignment,	$1^{11 / 2}$ ninda	1:30				
$6 \breve{s} e$ [silver is the wages of the hired man].	2 ninda	2	10 gin	10	1/2 ¢̌e	10
	$21 / 2$ ninda	2:30	11 gin	11	$\begin{aligned} & 1 \text { še } \\ & 11 / 2 \text { co } \end{aligned}$	20 30
	3 ninda	$\begin{aligned} & 3 \\ & 3 \cdot 30 \end{aligned}$	12 gin	12	2 se	40
	3 ½ ninda	3:30	13 gin	13	$21 / 2$ še	50
5 ninda is its length,	4 ninda 4^{112} ninda	4	14 gin	14	3 se	1
	41/2 ninda	4:39	15 gin	15	4 še	1:20
	5 ninda		16 gin	16	5 še	1:40
1 1/2 ninda (is its width),	\ldots		17 gin	17	6 še	
	Table of hej	/ depth	18 gin	18	7 še	2:20
			19 gin	19		
1/2 ninda is its depth,	$1 \mathrm{k} / \mathrm{s}$	1	$1 / 3$ sar		1 gin	1
	2 kuš	,	1/2 sar.	30	2 gin	2
	3 kus	3	5/6 sar	40	3 gin	3
10 <gin> is the volume of th	4 kus		5/6 sar	50	4 gin	4
<gin> is the volume	$5 \mathrm{kuš}$		1 sar	1	5 gin	5
work assignment,	1/2 ninde				6 gin	6
	ninda	12	7 sar		7 gin	7
	$11 / 2$ ninda	18	$71 / 2$ sar	7:30	8 gin	8
6 še [silver is the wages].					9 gin	9
			45 sar	45	10 gin	10

1. A trench. 5 ninda is its length, $1 \mathbf{1} / 2$ ninda (is its width), $1 / 2$ ninda is its depth, $10\langle\operatorname{gin}\rangle$ is the volume of the work assignment, $\mathbf{6} \check{s} e$ [silver is the wages of the hired man].

Length 5 ninda	5
Width $11 / 2$ ninda	$1: 30$
Depth1/2 ninda	6
Volume per man-day 10 gin	10
Weight 6 še (silver)	2

2. The base, the volume, the (number) of workers and the silver (of the total expenses) are how much? You, to know it,
3. the length and the width cross, $7: 30$ it will give you.
4. $\mathbf{7 : 3 0}$ to its depth raise, $\mathbf{4 5}$ it will give you.
5. The reciprocal of the work assignment detach, $\mathbf{6}$ it will give you. To 45 raise, $4: 30$ it will give you.
6. $\mathbf{4 : 3 0}$ to the wages raise, 9 it will give you. Such is the procedure.
7. Provide the synopsis of the procedure
8. Computes the base of the trench: length \times width
$5 \times 1: 30$ gives 7:30
9. Computes the volume of the trench: base \times depth
7:30 $\times 6$ gives 45
10. Computes the number of workers total volume / volume per man-day 45 / 10
$45 \times($ reciprocal of 10$)$
45×6 gives $4: 30$
11. Computes the total salary in silver
salary per man-day \times number of workers
$2 \times 4: 30$ gives 9
9 corresponds to 9 gin

YBC 4663 \#2

7. 9 gin is the silver for a trench, $1 \frac{1}{2}$ ninda (is its width), $1 / 2$ ninda is its depth, $10(\mathrm{gin})$ is the volume of the work assignment, 6 še (of silver) is the wage.
8. Its length is how much? You, to know it, the width and the depth cross,
9. 9 it will give you. The reciprocal of the work assignment detach,
10. (and) to 9 raise, 54 it will give you.
11. 54 to the wage raise, 1:48 it will give you.
12. The reciprocal of $1: 48$ (detach), $33: 20$ it will give you. $33: 20$ to 9 , the silver, raise,
13. 5 it will give you. 5 ninda is its length. Such is the procedure.
14. Its length is how much? You, in your procedure, the width and the depth cross,
15. 9 it will give you. The reciprocal of the work assignment detach,
16. (and) to 9 raise, 54 it will give you.
17. 54 to the wage raise, $1: 48$ it will give you.
18. The reciprocal of $1: 48$ (detach), $33: 20$ it will give you. $33: 20$ to 9 , the silver, raise,
19. 5 it will give you. 5 ninda is its length. Such is the procedure.

Lines 8-9 $\quad 1: 30 \times 6$ gives 9 (corresponding to a vertical surface)
Lines 9-10 $9 \div 10$, that is, $9 \times$ recip (10), that is, 9×6, gives 54 (corresponding to nothing)
Line $11 \quad 54 \times 2$ gives 1:48 (corresponding to nothing)
Lines 12-13 $9 \div 1: 48$, that is, $9 \times$ recip(1:48), that is, , $9 \times 33: 20$ gives 5 (corresponding to the length 5 ninda)

Procedure 1

Procedure 2

Procedure 1: length $\times \mathbf{A} \rightarrow$ silver

Procedure 2 :
silver / A \rightarrow length

Catalogue YBC 4612 \#1-5

1 1. $3 \times 60+45$ ninda is the length, $60+20$ ninda is the width, its
2. surface is how much? Its surface is 1 (bur'u) GAN.
2 3. 1(bur'u) GAN is the surface, $3 \times 60+45$ ninda is the length, 4. its width is how much? $60+20$ ninda is the width.
3 5. $180 G A N$ is the surface, $60+20$
6. ninda is the width, its length is how much? $3 \times 60+$ 45 ninda is the length.

Length $\rightarrow 3: 45$
Width \rightarrow 1:20 Surface?

$$
\begin{aligned}
& \text { Surface } \rightarrow 5 \\
& \text { Length } \rightarrow 3: 45 \\
& \text { Width? }
\end{aligned}
$$

Surface $\rightarrow 5$
Width \rightarrow 1:20
Length?

3:45

1:20

YBC 4663 \#7

0.9 gin is the silver for a trench.

1. The length and the width I added, it is $6: 30.1 / 2$ ninda [is its depth].
2. 10 gin is the work assignment, 6 še (silver) is the wage. Its length and its width how much?
3. You, in your procedure, the reciprocal of the wage detach.
4. To 9 gin, the silver, raise. 4:30 it will give you.
5. 4.30 to the work assignment raise. 45 it will give you.
6. The reciprocal of its depth detach. To 45 raise. 7:30 it will give you.
7. $1 / 2$ of the length and the width which I added break. $3: 15$ it will give you.
8. $3: 15$ cross itself. $10: 33: 45$ it will give you.
9. 7:30 from 10:33:45 tear out.
10. $3: 3: 45$ it will give you. Its equal-side take.
11. $1: 45$ it will give you. To the one append, from the other cut off.
12. The length and the width it will give you. 5 (ninda) is the length, $1 \frac{1}{2}$ ninda is the width.

Catalogue C5	Procedure texts	Concrete situation	Nature of the problem	Tools
C \#1	Pa \#1	Dimensions of the trench and costs in silver	Linear	Reference linear problem (steps meaningful)
C \#2	$\mathrm{Pa} \# 2$	Dimensions of the trench and costs in silver	Linear	Subroutine of the reference linear problem
C \#3	$\mathrm{Pa} \# 3$	Dimensions of the trench and costs in silver	Linear	Subroutine of the reference linear problem
C \#4	$\mathrm{Pa} \# 4$	Dimensions of the trench and costs in silver	Linear	Subroutine of the reference linear problem
C \#5	Pa \#5	Dimensions of the trench and costs in silver	Linear	Subroutine of the reference linear problem
C \#6	Pa \#6	Dimensions of the trench and costs in silver	Linear	Subroutine of the reference linear problem
C \#7	Pa \#7	Dimensions of the trench and costs in silver	Quadratic	Reference quadratic problem 1
C \#8	$\mathrm{Pa} \# 8$	Dimensions of the trench and costs in silver	Quadratic	Reference quadratic problem 2
C \#9	Lost Pb \#1	Dimensions of the trench	Linear	Reference linear problem (steps meaningful)l
C \#10	Lost Pb \#2	Dimensions of the trench	Linear	Subroutine of the reference linear problem
C \#11	Lost Pb \#3	Dimensions of the trench	Linear	Subroutine of the reference linear problem
C \#12	Lost Pb \#4	Dimensions of the trench	Linear	Subroutine of the reference linear problem
C \#13	Lost Pb \#5	Dimensions of the trench	Quadratic	Reference quadratic problem 1
C \#14	Lost Pb \#6	Dimensions of the trench	Quadratic	Reference quadratic problem 2
C \#15	Lost Pb \#7	Dimensions of the trench	False quadratic	Quadratic reduced to linear
C \#16	Lost Pb \#8	Dimensions of the trench	False quadratic	Quadratic reduced to linear
C \#17	Lost Pb \#9	Dimensions of the trench	False (?) quadratic	Quadratic reduced to linear (?)
C \#18	Lost Pb \#10	Dimensions of the trench	False (?) quadratic	Quadratic reduced to linear (?)
C \#19	Pc \#1	Dimensions of the trench	Quadratic	Reference quadratic problem 1
C \#20	Pc \#2	Dimensions of the trench	Quadratic	Linear portion with fractions. Reference quadratic problem 2
C \#21	Pc \#3	Dimensions of the trench	Quadratic	Linear portion with fractions. Reference quadratic problem 2
C \#22	Pc \#4	Dimensions of the trench and workdays	Linear	Subroutine of a reference linear problem not given
C \#23	Pc \#5	Dimensions of the trench and workdays	Linear	Subroutine of a reference linear problem not given
C \#24	Pc \#6	Dimensions of the trench and workdays	Linear	Subroutine of a reference linear problem not given
C \#25	Pc \#7	Dimensions of the trench and workdays	Linear	Subroutine of a reference linear problem not given
C \#26	Pc \#8	Dimensions of the trench and workdays	Linear	Subroutine of a reference linear problem not given
C \#27	Pc \#9	Dimensions of the trench and workdays	Linear	Subroutine of a reference linear problem not given
C \#28	Pc \#10	Dimensions of the trench and workdays	Linear	Subroutine of a reference linear problem not given
C \#29		Dimensions of the trench and workdays	Quadratic	Reference quadratic problem 1
C \#30		Dimensions of the trench and workdays	Quadratic	Reference quadratic problem 2
C \#31		Dimensions of another trench and costs in grain	Linear	Cath line?
Colophon		"31 sections (about) trenches"		

Series of problems

School texts of elementary level
School texts of intermediate level

Catalogue YBC 4612 \#1-5

Curriculum and elements of syllabus

- Metrological tables
- Numerical tables
- Surface of a square, reciprocals, skeletons of small linear problems
- Paradigm of the rectangle

- Giving a meaning to each step of the procedure
- Using subroutines of a reference linear problem (generally, the first of the cycle)
- Making a reference quadratic problem (reduction by multiplications and divisions)
- Solving reference quadratic problems (two models)
- Refinements of the first cycle

Other cycles of the catalogues YBC 4657 and YBC 5037

First cycle of the catalogue YBC 4657

	Place	Tablet type	Structure	Content
Elementary	Nippur	I, II, III	Curriculum	Metrological and numerical lists and tables
Intermediate	Nippur	IV	Small variations	Exercises: surface of squares, reciprocals, small linear problems
Advanced	South	S	Spiral syllabus	Linear and quadratic problems

Thank you for your

 attention

B

Gibson et al. 2001; McCown, PI. 2, 3, 5

Multiplying

	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$
	41	40
3	20	
3	20	
16		
23	21	40

YBC 4663 \#1: the procedure

3.	the length and the width cross, 7.30 it will give you.	$5 \times 1: 30$ gives 7:30 (the surface of the base)
4.	7.30 to its depth raise, 45 it will give you.	$7: 30 \times 6$ gives 45 (the volume of the trench)
5.	The reciprocal of the work assignment detach, 6 it will give you. To 45 raise, 4.30 it will give you.	$45 / 10$, that is, 45×6, which gives $4: 30$ (the number of workers)
6.	4.30 to the wages raise, 9 it will give you.	$4: 30 \times 2$ gives 9 (the total cost of the trench)

3. the length and the width cross, 7:30 it will give you.

Multiplication table by $1: 30$

1	1.30	12	18
2	3	13	19.30
3	4.30	14	21
4	6	15	22.30
$\mathbf{5}$	$\mathbf{7 . 3 0}$	16	24
6	9	17	25.30
7	10.30	18	27
8	12	$20-1$	28.30
9	13.30	20	30
10	15	30	45
11	16.30	40	1
		50	1.15

l.	Text of \#7	Arithmetical operation			
1. 7.	The length and the width I added, it is 6:30. (The base is) 7:30				
7.	$1 / 2$ of the length and the sag which I added break. 3:15 it will give you.	1/2	6 3	$\begin{aligned} & 30 \\ & 15 \\ & \hline \end{aligned}$	
	(Manipulation which shows that the initial rectangle has the same area as the gnomon; not explained in the text)				
8.	3:15 cross itself. 10:33:45 it will give you.	\times	3 3 10	$\begin{aligned} & 15 \\ & 15 \\ & 33 \end{aligned}$	45

Catalogue $\mathbf{C 1}$, the very beginning of the syllabus developed in $\mathbf{C 5}$?

	Museum number	Type	Prov.	Content	Colophon	
Cl	YEC 4612	\$	Uniknown	15 sections on fields $\left(a-5 a_{5}\right)$	\emptyset	
C2	YBC 6492	S	Uniknown	24 sections on fields ($\mathrm{a}-\mathrm{s}, \mathrm{a}$)	0 (unfinished tablet?)	
C3	YEC 4607	S	Unknown	10 sections on bricks $\left(s \mid g_{4}\right)$	10 sections (10 im-su=mes)	
C4	YEC 4652	S	Unknown	22 sections on stones (in au)	$\begin{aligned} & 22 \text { sections } \\ & (Z 2[1 \mathrm{~m}-\mathrm{s} \mathrm{u})) \end{aligned}$	
C5	YEC 4657	S	Unknown	31 sections on trenches (ki - lad	31 sections on trenches (31 im-su ki-\|al	
66	YEC 5037	\$	Unknown	44 sections on trenches ($\mathbf{k} 1-1 a_{2}$)	44 sections (44 im-si u)	
C7	YEC 466	\$	Unknown	26 sections on canals $\left(p a_{k}-s \mid g\right)$	26 sections (26 im-supas- sig	
08	YEC 7164	S	Unknown	19 sections on canals $(p a-s \\| g)$	\square	
	BM80209	S	Unknown (horth?)	18 sections on canals $(p a-s \\| g)$	\square	
	\|M 52672	7^{39}	Unknown (horth?)	$2+$ sections on felds	Destroyed?	
	$\begin{aligned} & \text { M } 52916+ \\ & \operatorname{M52685} \\ & \text { M } 52304 \end{aligned}+$	S	Tell Harmal (horth)	$70+$ sections on fields and coefficients table	[...]	
	TMS 5	M (3/3)	Susa	262 sections on squares	$\begin{aligned} & 262 \text { lines }(4.22 \mathrm{mu}=\mathrm{bi} \\ & \mathrm{nigin}-\mathrm{mes})+ \\ & \text { date }+\mathbb{N P} \end{aligned}$	
	TMS6	M (2+/2+)	Susa	$60+$ sections on squares	[...]	

